If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-21x=24
We move all terms to the left:
3x^2-21x-(24)=0
a = 3; b = -21; c = -24;
Δ = b2-4ac
Δ = -212-4·3·(-24)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-27}{2*3}=\frac{-6}{6} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+27}{2*3}=\frac{48}{6} =8 $
| 25=r+20 | | 1.5*x=8 | | 4=2(f+-3) | | 3.5x+2.5=6.5 | | 3x+3x4=x | | 7(15x-11,3)=8(8x-2,2) | | 5u-13=17 | | -150=-6(1+8b) | | 14-8p=10-7p | | b+11=65 | | y/−7=1/14 | | y+22=-10.3 | | x2-9x+38=0 | | (2,4x-0,72)(1,5x+3,6)=0 | | (28x)+(3x+25)=180 | | 9/r=-3 | | -2.2x=5 | | 2.5=35y | | 53x=12 | | 3x-4/3=-2 | | 53x=12 | | -18u+16u+-18=20 | | 2x(x+5)=2x+5 | | 2×(i+1)=18 | | -58-17x=40 | | 0.75x-18.5=0.65 | | -2.2x=4 | | 44=4(5+y) | | -2.2x=3 | | 12x-16=52 | | 4^3*4^3x=16^x+4 | | X+2x+5=x+9 |